Fitting shock cooling lightcurves to probe supernova progenitors

Patrick Armstrong - ANU Supervisors: Chris Lidman and Brad Tucker

patrick.armstrong@anu.edu.au

Core Collapse Supernovae

- Spectral and photometric variation
- Few progenitor observations

Shock Cooling Lightcurve

Shock Cooling Lightcurve

- Piro (2015) (P15)
 - No assumption of density profile
 - Simple expanding photosphere
- Sapir & Waxman (2017) (SW17)
 - Polytropic density profile
 - *n=3*: radiative envelope (BSG)
 - n=3/2: convective envelope (RSG)

Nakar & Piro (2014) $\longrightarrow \propto$ Envelope Radius

- Piro et al. (2020) (P20)
 - Improved upon P15
 - Two component velocity model
 - Outer material: Steep velocity gradient
 - Inner material: Shallow velocity gradient
 - SN1993j
 - SN2016gkg
 - Incomplete data
 - No rise

 \propto Envelope Mass

L(t, Me, Re, v, t0) R(t, Me, Re, v, t0) T(t, Me, Re, v, t0)

SN2017jgh - First Complete SCL

- Kepler/K2
 - 30 minute cadence
 - 80 day campaign
 - \circ Broad filter (4000 to 9000Å)
 - Many systematic effects
 - Loss of reaction wheels
 - Solar pressure drifting

Armstrong et al. (2021)

- Ground Based Photometry
 - Pan-STARRS1 Discoverer
 - Swope
- Single Gemini Spectrum

SN2017jgh - Fit to SCL

- SW17 Best fitting model
 - Convective (n=3/2) envelope preferred
- P20 next best without density assumption
- P15 too simple

-10

-10

Progenitor likely a yellow supergiant

- Envelope radius of \sim 50-290R_{\odot}
- Envelope mass of \sim 0-1.7M_{\odot}
- Shock velocity of $(7.5-10.3) \times 10^3 \text{ km/s}$

Armstrong et al. (2021)

SN2021zby (In Prep - Wang et al.)

- TESS
 - \circ 10 minute cadence
- Ground Based Photometry
 - ATLAS Discoverer
 - DECam
- Multiple SpeX Spectrum

SN2021zby - SCL Fits (In Prep - Wang et al.)

n=3/2: convective envelope (RSG)

n=3: radiative envelope (BSG)

- Envelope Radius of ~50-350R₀
- Envelope Mass of $\sim 0.3-3M_{\odot}$

- Envelope Radius of ~180-420R
- Envelope Mass of $\sim 2.5-5 M_{\odot}$

Conclusions

- SCL gives insight into core collapse progenitors
- More shock cooling lightcurves expected in the future
- <u>https://github.com/OmegaLambda199</u>
 <u>8/ShockCooling</u>
 - Free and open source SCL fitter maintained by me

References:

- Nakar E., Piro A. L., 2014, ApJ, 788, 193
- Piro A. L., 2015, ApJ, 808, L51
- Piro A. L., Haynie A., and Yao Y., 2021, ApJ, 909, 209
- Sapir N., Waxman E., 2017, ApJ, 838, 130
- Armstrong, P., et al., 2021, MNRAS, 507, 3125

Questions?

My paper