
In 33 easy steps

- Patrick Armstrong
Programmer extraordinaire

1. Described by Neco as “A proper
hacker type of guy”

2. Accused of having too clacky a
keyboard

3. Use Arch Linux (btw)
4. Lead maintainer of Pippin

cosmological pipeline
5. Built many other supernova and

cosmological tools:
a. SALT2Jacobian
b. ShockCooling
c. IABCosmo <- PhD project

Why should you listen to me?

The ubiquitous “Hello, World!”

How to print “Hello, World!” from scratch in 4 easy steps
1. Open a new file called `helloworld.py` in your text editor of choice
2. Type `print(‘Hello, World!’)`
3. Open your terminal, navigate to your file, and run `python helloworld.py`
4. You should see `Hello, World!` printed in your terminal!

How to really print “Hello, World!” from scratch in 4 easy steps
1. Open your terminal
2. Run `echo “print(‘Hello, World!’)” > helloworld.py` to create your python script
3. Run `python helloworld.py`
4. You should see `Hello, World!` printed in your terminal!

How does python print “Hello, World!”?

How does python print “Hello, World!”?
helloworld.py

__pycache__/helloworld.pyc

Cpython bytecode “compiler”

Hello, World!

Cpython bytecode interpreter

print(“Hello, World!”)

co_consts

“Hello,

World!”

co_varnames co_names

print

Memory

1 0 LOAD_NAME 0 (print)
2 LOAD_CONST 0 ('Hello, World!')
4 CALL_FUNCTION 1

Instructions

How to really, really print “Hello, World!” from scratch in 5 easy
steps
1. Open your terminal
2. Run `echo “print(‘Hello, World!’)” > helloworld.py` to create your python script
3. Compile your script to bytecode via `python -m py_compile helloworld.py`
4. Interpret and run your compiled code via `python __pycache__/helloworld.pyc`
5. You should see `Hello, World!` printed in your terminal!

How do you get python in the first place?

How to really, really, really print “Hello, World!” from scratch in 5
easy steps
1. Open your terminal
2. Run `git clone https://github.com/python/cpython`
3. Run `cd cpython`
4. Run `./configure --with-pydebug` to prepare for compilation
5. Run `make -j8` to compile python using GCC. You should now have a python

executable in your directory
6. Run `echo “print(‘Hello, World!’)” > helloworld.py` to create your python script
7. Compile your script to bytecode via `./python -m py_compile helloworld.py`
8. Interpret and run your compiled code via `./python __pycache__/helloworld.pyc`
9. You should see `Hello, World!` printed in your terminal!

What about C, C++, and GCC?

GCC
C C++

Compiles

Written in

NB Evolved into

B Evolved into

BCPL
Evolved into

CPL

Evolved into

ALGOL60/58
Evolved into FORTRAN

Competed with Assembly

Precursor to

How to really, really, really, really print “Hello, World!” from
scratch in 19 easy steps

1. Use Assembly to create
FORTRAN which
competed with

2. ALGOL58 which evolved
into

3. ALGOL60 which evolved
into

4. CPL which evolved into
5. BCPL which evolved into
6. B which evolved into
7. NB which evolved into
8. C which was used to create
9. GCC

10. Create a terminal program in C
11. Open your terminal
12. Run `git clone

https://github.com/python/cpython`
13. Run `cd cpython`
14. Run `./configure --with-pydebug`
15. Run `make -j8`. You should now have a

python script in your directory
16. Run `echo “print(‘Hello, World!’)” >

helloworld.py` to create your python
script

17. Compile your script to bytecode via
`./python -m py_compile helloworld.py`

18. Interpret and run your compiled code
via `./python
__pycache__/helloworld.pyc`

19. You should see `Hello, World!` printed in
your terminal!

What about `git`, `cd`, `make`, `echo`, etc...
1. `git`, `cd`, `make`, `echo`, etc...: bash commands
2. Bash (Bourne-Again shell) is a unix shell

a. Bash replaced Bourne as a free, open-source shell
b. Bourne replaced Thompson, the first unix shell

3. Unix shells are command- line interpreters for the Unix operating system
4. Unix is currently written in C, but was originally written in Assembly

How to really, really, really, really, REALLY print “Hello, World!”
from scratch in 24 easy steps

1. Use Assembly to create
UNIX

2. Use Assembly to create the
Thompson Shell which
evolved into

3. The Bourne Shell which
evolved into

4. Bash which allows you to
run

5. Bash commands like `git`,
`cd`, `make`, and `echo`

6. Use Assembly to create
FORTRAN which
competed with

7. ALGOL58 which evolved
into

8. ALGOL60 which evolved
into

9. CPL which evolved into
10. BCPL which evolved into
11. B which evolved into
12. NB which evolved into
13. C which was used to create
14. GCC

15. Create a terminal program in C
16. Open your terminal
17. Run `git clone

https://github.com/python/cpython`
18. Run `cd cpython`
19. Run `./configure --with-pydebug`
20. Run `make -j8`. You should now have a

python script in your directory
21. Run `echo “print(‘Hello, World!’)” >

helloworld.py` to create your python
script

22. Compile your script to bytecode via
`./python -m py_compile helloworld.py`

23. Interpret and run your compiled code
via `./python
__pycache__/helloworld.pyc`

24. You should see `Hello, World!` printed in
your terminal!

How is your computer doing any of this?
Assembly

Stored
program
computer

Plugboard,
punched

tape, etc...

Universal
Turing

machine

Alan Turing
Enigma
Machine

World War 2

World War 1

How to really, really, really, really, REALLY, R E A L L Y print “Hello, World!”
from scratch in 33 easy steps

1. Assassinate an Archduke
2. Survive WW1
3. Survive WW2
4. Create the Enigma Machine
5. Crack the Enigma Machine
6. Develop the Turing Machine
7. Build the first computers
8. Develop electronic computers
9. Create Assembly language

10. Use Assembly to create UNIX
11. Use Assembly to create the

Thompson Shell which
evolved into

12. The Bourne Shell which
evolved into

13. Bash which allows you to run
14. Bash commands like `git`, `cd`,

`make`, and `echo`

15. Use Assembly to create
FORTRAN which
competed with

16. ALGOL58 which evolved
into

17. ALGOL60 which evolved
into

18. CPL which evolved into
19. BCPL which evolved into
20. B which evolved into
21. NB which evolved into
22. C which was used to create
23. GCC

24. Create a terminal program in C
25. Open your terminal
26. Run `git clone

https://github.com/python/cpython`
27. Run `cd cpython`
28. Run `./configure --with-pydebug`
29. Run `make -j8`. You should now have a

python script in your directory
30. Run `echo “print(‘Hello, World!’)” >

helloworld.py` to create your python
script

31. Compile your script to bytecode via
`./python -m py_compile helloworld.py`

32. Interpret and run your compiled code
via `./python
__pycache__/helloworld.pyc`

33. You should see `Hello, World!` printed in
your terminal!

Questions?

Compilation

print(“Hello, World!”)

python -m py_compile helloworld.py __pycache__/helloworld.pyc

co_consts

“Hello,

World!”

co_varnames co_names

print

Memory

1 0 LOAD_NAME 0 (print)
2 LOAD_CONST 0 ('Hello, World!')
4 CALL_FUNCTION 1

Instructions

Bytecode instructions
python -m dis helloworld.py

 1 0 LOAD_NAME 0 (print)
 2 LOAD_CONST 0 ('Hello, World!')
 4 CALL_FUNCTION 1

Source code line number

Byte offset

Instruction Index Argument
Hint for humans

Evaluation Stack Run StackMemory
Push Pop & Push

Running helloworld.pyc

co_consts

“Hello,

World!”

co_varnames co_names

print

Memory

Evaluation Stack Run Stack

 1 0 LOAD_NAME 0 (print)
 2 LOAD_CONST 0 ('Hello, World!')
 4 CALL_FUNCTION 1

print
“Hello,

World!” “Hello,

World!”

print

